3 resultados para 111500 PHARMACOLOGY AND PHARMACEUTICAL SCIENCES

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper challenges the predominant view that legitimation is merely a specific phase in merger or acquisition processes. We argue that a better understanding of postmerger organizational dynamics calls for conceptualization of discursive legitimation as an inherent part of unfolding merger processes. In particular, we focus on the recursive relationship between legitimation and organizational action. We have two objectives: to outline a theoretical model that helps one to understand the dynamics of discursive legitimation and organizational action in postmerger organizations, and to examine a revealing case to distinguish the inherent risks and problems in discursive legitimation. Our case analysis focuses on the merger between the French pharmaceutical companies BioMérieux and Pierre Fabre. We adopt a critical multimethod approach and distinguish specific discursive dynamics and pathological tendencies in this case. The analysis highlights the unintended consequences of discursive legitimation, the central role of sensegiving and sensehiding in discursive legitimation, the inherently political nature of legitimation and the risks associated with politicization, the special problems associated with fashionable discourses and the role of the media, the use of specific discursive strategies for legitimation and delegitimation, and the crucial role of actual integration results. This analysis adds to the existing research on mergers and acquisitions by treating discursive legitimation as part of the merger dynamics. In particular, our case analysis provides a new explanation for merger failure. We also believe that the recursive model connecting discursive legitimation and delegitimation strategies to concrete organizational action makes a more general contribution to our understanding of organizational legitimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first line medication for mild to moderate Alzheimer s disease (AD) is based on cholinesterase inhibitors which prolong the effect of the neurotransmitter acetylcholine in cholinergic nerve synapses which relieves the symptoms of the disease. Implications of cholinesterases involvement in disease modifying processes has increased interest in this research area. The drug discovery and development process is a long and expensive process that takes on average 13.5 years and costs approximately 0.9 billion US dollars. Drug attritions in the clinical phases are common due to several reasons, e.g., poor bioavailability of compounds leading to low efficacy or toxic effects. Thus, improvements in the early drug discovery process are needed to create highly potent non-toxic compounds with predicted drug-like properties. Nature has been a good source for the discovery of new medicines accounting for around half of the new drugs approved to market during the last three decades. These compounds are direct isolates from the nature, their synthetic derivatives or natural mimics. Synthetic chemistry is an alternative way to produce compounds for drug discovery purposes. Both sources have pros and cons. The screening of new bioactive compounds in vitro is based on assaying compound libraries against targets. Assay set-up has to be adapted and validated for each screen to produce high quality data. Depending on the size of the library, miniaturization and automation are often requirements to reduce solvent and compound amounts and fasten the process. In this contribution, natural extract, natural pure compound and synthetic compound libraries were assessed as sources for new bioactive compounds. The libraries were screened primarily for acetylcholinesterase inhibitory effect and secondarily for butyrylcholinesterase inhibitory effect. To be able to screen the libraries, two assays were evaluated as screening tools and adapted to be compatible with special features of each library. The assays were validated to create high quality data. Cholinesterase inhibitors with various potencies and selectivity were found in natural product and synthetic compound libraries which indicates that the two sources complement each other. It is acknowledged that natural compounds differ structurally from compounds in synthetic compound libraries which further support the view of complementation especially if a high diversity of structures is the criterion for selection of compounds in a library.